

Welcome to f5-uwa-cloud’s documentation!

Contents:

	UWA Recommendations
	UWA - Ingest VNET.
	Benefits

	Requirements:

	Application Deployment Lifecycle.

	Provisioning
	ARM Templates

	Declarative Onboarding (DO)

	Configuration
	F5 Application Services Templates (FAST)

	Application Services 3 Extension (AS3)

	Ansible

	HashiCorp

	Monitoring & Analytics
	F5 Automation Tool Chain - Telemetry Streaming (TS)

	Backup and Restoration

	Recommendations

	Conclusion

Indices and tables

	Index

	Module Index

	Search Page

UWA Recommendations

UWA - Ingest VNET.

The approach, BIG-IP VE HA pair load balancing [https://github.com/F5Networks/f5-azure-arm-templates/blob/master/supported/failover/same-net/via-lb/3nic/alternate-deployment-topologies.md] for the transit VNET, deployed with HA Failover
via LB template can easily fit into existing infrastructure without asking the customer to
re-architect the entire infrastructure. Of course, the main requirement of this use case is that
SNAT is allowed when traffic reaches the F5 BIG-IP VE’s.

Benefits

	This solution works for both Reverse and Forward proxies use cases

	Minimal affect to the customer’s existing setup

	All the same benefits as HA failover-via LB solution

Requirements:

	SNAT is required

	Azure Native Internal load balancer

Following these deployment patterns it enables native Azure functionality, this includes the
integration into Azure Security Center and consolidation logging framework that aligns the
previously mentioned Cloud Security posture.

Application Deployment Lifecycle.

As with all Cloud Journeys this document will outline the each stage and how F5’s vision of
Code-To-Customer, it will be broken down into the following stages:

	Provisioning

	Configuration

	Monitoring & Analytics

	Backup and Restoration

With each stage outlined and tools details recommendations will be made of the Code-To-Customer
approach.

Provisioning

ARM Templates

Using Azure ARM templates it is possible to create a high availability
(active-active/active-standby) pair of BIG-IP VE instances in Microsoft Azure. F5 Networks have
grouped the available templates into the following categories:

Standalone

These templates are used to deploy a single BIG-IP VE, these are primarily used for development
testing or replacing/upgrading instances that form part of traditional fail-over
clusters.

Failover

These templates are designed for the deployment of more that one BIG-IP VE in a ScaleN cluster,
this would be similar to UWA existing, traditional, deployment methodologies.
These clusters are primary deployed in replication of traditional Active/Standby BIG-IP
deployments, in the case of UWA the nominated deployment pattern is from active/active.

Autoscale

These template types deploy a group of BIG-IP VE’s that scale in and out based on thresholds
nominated, BIG-IP VE’s are all deployed as Active and are primarily used to scale out an
individual L7 service on a single wildcard virtual. Addition services can be provisioned using
port remapping for these, these types of deployments rely upstream service
to distribute traffic like DNS/GSLB or a platform’s built-in load balancer.

With the recommended configuration of Active/Active, SourceNAT is needed to ensure the egress
traffic traverse the same ingress BIG-IP. Another, more advanced, alternative is to use Direct
Server Return (DSR) in Azure LB that means that the Azure LB will not perform Destination NAT on
the traffic which will arrive at the backend pool with the correct destination IP address, this is
commonly used in scenarios that require 1 VIP per application within BIG-IP Cluster.

Declarative Onboarding (DO)

F5 Declarative Onboarding (DO) is an F5 offering that provides a framework to automate BIG-IP
onboarding via Declarative REST APIs. Similar to AS3, DO provides a foundation to enable F5’s
Infrastructure as Code (IaC) deployment methodologies.

DO automates L1-L3 on-boarding for BIG-IP, making BIG-IP available on the network and ready to
accept L4-L7 Application Services configurations. The following example declaration on-boards a
clustered BIG-IP system, further explanation of this can be found locate at Composing a Declarative
Onboarding declaration for a cluster of BIG-IPs [https://clouddocs.f5.com/products/extensions/f5-declarative-onboarding/latest/clustering.html].

{
 "schemaVersion": "1.0.0",
 "class": "Device",
 "async": true,
 "label": "Onboard BIG-IP into an HA Pair",
 "Common": {
 "class": "Tenant",
 "hostname": "bigip1.example.com",
 "myLicense": {
 "class": "License",
 "licenseType": "regKey",
 "regKey": "AAAAA-BBBBB-CCCCC-DDDDD-EEEEEEE"
 },
 "myDns": {
 "class": "DNS",
 "nameServers": [
 "8.8.8.8",
 "2001:4860:4860::8844"
],
 "search": [
 "f5.com"
]
 },
 "myNtp": {
 "class": "NTP",
 "servers": [
 "0.pool.ntp.org",
 "1.pool.ntp.org",
 "2.pool.ntp.org"
],
 "timezone": "UTC"
 },
 "root": {
 "class": "User",
 "userType": "root",
 "oldPassword": "foo",
 "newPassword": "bar"
 },
 "admin": {
 "class": "User",
 "userType": "regular",
 "password": "asdfjkl",
 "shell": "bash"
 },
 "anotherUser": {
 "class": "User",
 "userType": "regular",
 "password": "foobar",
 "partitionAccess": {
 "Common": {
 "role": "guest"
 }
 }
 },
 "myProvisioning": {
 "class": "Provision",
 "ltm": "nominal"
 },
 "internal": {
 "class": "VLAN",
 "tag": 4093,
 "mtu": 1500,
 "interfaces": [
 {
 "name": "1.2",
 "tagged": false
 }
]
 },
 "internal-self": {
 "class": "SelfIp",
 "address": "10.10.0.100/24",
 "vlan": "internal",
 "allowService": "default",
 "trafficGroup": "traffic-group-local-only"
 },
 "external": {
 "class": "VLAN",
 "tag": 4094,
 "mtu": 1500,
 "interfaces": [
 {
 "name": "1.1",
 "tagged": false
 }
]
 },
 "external-localself": {
 "class": "SelfIp",
 "address": "10.20.0.100/24",
 "vlan": "external",
 "allowService": "none",
 "trafficGroup": "traffic-group-local-only"
 },
 "external-self": {
 "class": "SelfIp",
 "address": "10.20.0.200/24",
 "vlan": "external",
 "allowService": "none",
 "trafficGroup": "traffic-group-1"
 },
 "default": {
 "class": "Route",
 "gw": "10.10.0.1",
 "network": "default",
 "mtu": 1500
 },
 "configsync": {
 "class": "ConfigSync",
 "configsyncIp": "/Common/internal-self/address"
 },
 "failoverAddress": {
 "class": "FailoverUnicast",
 "address": "/Common/internal-self/address"
 },
 "failoverGroup": {
 "class": "DeviceGroup",
 "type": "sync-failover",
 "members": ["bigip1.example.com", "bigip2.example.com"],
 "owner": "/Common/failoverGroup/members/0",
 "autoSync": true,
 "saveOnAutoSync": false,
 "networkFailover": true,
 "fullLoadOnSync": false,
 "asmSync": false
 },
 "trust": {
 "class": "DeviceTrust",
 "localUsername": "admin",
 "localPassword": "pass1word",
 "remoteHost": "/Common/failoverGroup/members/0",
 "remoteUsername": "admin",
 "remotePassword": "pass2word"
 }
 }
 }

Configuration

F5 BIG-IP VE’s, once deployed, may be configured to either suit UWA DevOps methodology levering
Azure DevOps [https://azure.microsoft.com/en-us/services/devops/] or in-house deployment pipelines. As with the variations of provisioning of
BIG-IP VE’s, the same variety exists to suit the provisioning of application services such as;

	F5 Application Services Templates (FAST)

	Application Services 3 Extension (AS3)

	Ansible

	HashiCorp

F5 Application Services Templates (FAST)

F5 FAST, provides a way to streamline deployment of AS3 applications onto BIG-IP using AS3
deployment patterns, or templates. FAST is the next phase of evolution for F5, unlocking new
capabilities, aligning to multi-cloud, injecting automation, and empowering customers with our
best-in-class application services.

This allows, through the use of a tabbed gui within the BIG-IP console, the construction of Virtual
Server configuration that produces a AS3 declaration that can be copied, committed to source or
templates to be set as AS3 payloads on REST API operations.

Further information, how-to’s and additional examples are located at the FAST [https://clouddocs.f5.com/products/extensions/f5-appsvcs-templates/latest/] documentation
site.

Application Services 3 Extension (AS3)

Application Services 3 Extension is a flexible, low-overhead mechanism for managing
application-specific configurations on a BIG-IP system. AS3 uses a declarative model, meaning
you provide a JSON declaration rather than a set of imperative commands.

The declaration represents the configuration which AS3 creates on a BIG-IP system. AS3 is
well-defined according to the rules of JSON Schema, and declarations validate according to JSON
Schema. AS3 accepts declaration updates via REST (push), reference (pull), or CLI (flat file
editing).

An example AS3 is as follows, this contains;

	Partition (Tenant) named Sample_http_01

	HTTP VIP called servceMain

	A pool named web_pool

	Persistence provide based on JSESSIONID cookie

{
 "class": "AS3",
 "action": "deploy",
 "persist": true,
 "declaration": {
 "class": "ADC",
 "schemaVersion": "3.0.0",
 "id": "fghijkl7890",
 "label": "Sample 1",
 "remark": "HTTP with custom persistence",
 "Sample_http_01": {
 "class": "Tenant",
 "A1": {
 "class": "Application",
 "template": "http",
 "serviceMain": {
 "class": "Service_HTTP",
 "virtualAddresses": [
 "10.0.6.10"
],
 "pool": "web_pool",
 "persistenceMethods": [{
 "use": "jsessionid"
 }]
 },
 "web_pool": {
 "class": "Pool",
 "monitors": [
 "http"
],
 "members": [{
 "servicePort": 80,
 "serverAddresses": [
 "192.0.6.10",
 "192.0.6.11"
]
 }]
 },
 "jsessionid": {
 "class": "Persist",
 "persistenceMethod": "cookie",
 "cookieMethod": "hash",
 "cookieName": "JSESSIONID"
 }
 }
 }
 }
}

Further information, along with VSCode Schema validation, is currently located at Application
Services 3 Extension Documentation [https://clouddocs.f5.com/products/extensions/f5-appsvcs-extension/latest/]

Ansible

BIP-IP’s, both physical and virtual appliances, can also be provisioned, configured and managed with
the application-deployment tool Anisble. From Ansible 2.9+ BIG-IP and BIG-IQ supports Ansible
Galaxy, a website - Galaxy - where users can obtain collection of roles that also support
F5 Ansible Galaxy Modules [https://galaxy.ansible.com/f5networks/f5_modules]

An example Ansible playbook [https://clouddocs.f5.com/products/orchestration/ansible/devel/usage/playbook_tutorial.html] declaration for configuration HA Pair of BIG-IP’s, Ansible templates
- as below - using Jinja2 [https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html]

- name: Common HA configuration on all devices
 hosts: f5-test
 connection: local

 vars:
 provider:
 server: "{{ ansible_host }}"
 server_port: "{{ f5_server_port }}"
 user: "{{ f5_username }}"
 password: "{{ f5_password }}"
 validate_certs: "{{ validate_certs }}"

 tasks:
 - include_tasks: validate.yaml

 - name: Add VLANs
 bigip_vlan:
 name: "{{ item.vlan.name }}"
 tag: "{{ item.vlan.tag }}"
 untagged_interfaces: "{{ item.vlan.interfaces }}"
 provider: "{{ provider }}"
 loop: "{{ nets }}"

 - name: Add Self-IPs
 bigip_selfip:
 name: "{{ item.name }}"
 address: "{{ item.address }}"
 netmask: "{{ item.netmask }}"
 vlan: "{{ item.vlan.name }}"
 provider: "{{ provider }}"
 allow_service: default
 loop: "{{ nets }}"

 - name: Configure hostname
 bigip_hostname:
 hostname: "{{ inventory_hostname }}"
 provider: "{{ provider }}"

 - name: Set CMI device parameters
 bigip_device_connectivity:
 config_sync_ip: "{{ config_sync_ip }}"
 mirror_primary_address: "{{ mirror_primary_address }}"
 unicast_failover: "{{ unicast_failover }}"
 provider: "{{ provider }}"

- name: Primary device specific configuration
 hosts: f5-test[0]
 connection: local

 vars:
 provider:
 server: "{{ ansible_host }}"
 server_port: "{{ f5_server_port }}"
 user: "{{ f5_username }}"
 password: "{{ f5_password }}"
 validate_certs: "{{ validate_certs }}"

 tasks:
 - name: Trust peer device
 bigip_device_trust:
 peer_server: "{{ hostvars[item].ansible_host }}"
 peer_hostname: "{{ hostvars[item].inventory_hostname }}"
 peer_user: "{{ f5_username }}"
 peer_password: "{{ f5_password }}"
 provider: "{{ provider }}"
 loop: "{{ groups['f5-test'][1:] }}"

 - name: Add Device Group
 bigip_device_group:
 name: deviceGrp
 auto_sync: yes
 type: sync-failover
 provider: "{{ provider }}"

 - name: Add members to the device group
 bigip_device_group_member:
 device_group: deviceGrp
 name: "{{ item }}"
 provider: "{{ provider }}"
 loop: "{{ groups['f5-test'] }}"

 - name: Perform a config sync
 bigip_configsync_action:
 device_group: deviceGrp
 sync_device_to_group: yes
 provider: "{{ provider }}"

Further information, along with further references are located;

	Ansible Playbooks [https://docs.ansible.com/ansible/latest/user_guide/playbooks.html]

	Ansible Tower [https://www.ansible.com/products/tower]

	AWX [https://www.ansible.com/products/awx-project/faq]

Or how to run F5 Ansible Playbooks [https://ansible.github.io/workshops/decks/ansible_f5.pdf] for Tower and AWX.

HashiCorp

HashiCorp, the creators of Terraform OpenSource IaC, also have Terraform Cloud, the enterprise
offering that supports divisions along with MFA and SSO, that incorporates Sentinel that enables the
shift to multi-cloud infrastructure. Like DO, AS3 and Ansible Terraform [https://terraform.io] also support DevOps
pipelines and GitFlow [https://datasift.github.io/gitflow/IntroducingGitFlow.html].

An example Terraform Plan, main.tf, is defined as follows;

#
Set minimum Terraform version and Terraform Cloud backend
#
terraform {
 required_version = ">= 0.12"
}
/*
Create a random id
*/
resource "random_id" "id" {
 byte_length = 2
}
/*
Create VPC as per requirements
*/
module "vpc" {
 source = "../modules/services/network"

 providers = {
 aws = aws.secops
 }

 prefix = "${var.project}-${var.environment}"
 cidr = var.cidr
 azs = var.azs
 env = var.environment
 random = random_id.id

}
/*
Create BIG-IP host as per requirements
*/
module "bigip" {
 source = "../modules/functions/bigip"

 providers = {
 aws = aws.secops
 }

 prefix = "${var.project}-${var.environment}"
 cidr = var.cidr
 azs = var.azs
 env = var.environment
 vpcid = module.vpc.vpc_id
 public_subnets = module.vpc.public_subnets
 private_subnets = module.vpc.private_subnets
 database_subnets = module.vpc.database_subnets
 random = random_id.id
 keyname = var.ec2_key_name
 keyfile = var.ec2_key_file
}

Create Jump host as per requirements
module "jumphost" {
 source = "../modules/functions/jumphost"

 providers = {
 aws = aws.secops
 }

 prefix = "${var.project}-${var.environment}"
 region = var.region
 cidr = var.cidr
 azs = var.azs
 env = var.environment
 vpcid = module.vpc.vpc_id
 public_subnets = module.vpc.public_subnets
 public_nic_ids = module.bigip.public_nic_ids
 docker_private_ip = module.docker.docker_private_ip
 random = random_id.id
 keyname = var.ec2_key_name
 keyfile = var.ec2_key_file
 bigip_mgmt_addr = module.bigip.mgmt_addresses
 bigip_mgmt_dns = module.bigip.mgmt_public_dns
 bigip_password = module.bigip.bigip_password
 bigip_private_add = module.bigip.private_addresses
}

Further information on the use of Terraform;

	Modules [https://www.terraform.io/docs/configuration/modules.html]

	Providers [https://www.terraform.io/docs/providers/bigip/index.html]

along with F5 Terraform Resources [https://clouddocs.f5.com/products/orchestration/terraform/latest/userguide/installing.html] that can also be found on F5 CloudDocs [https://clouddocs.f5.com/].

Monitoring & Analytics

F5 Automation Tool Chain - Telemetry Streaming (TS)

Consistent with IaC, Telemetry Streaming (TS) is F5 Networks JSON declarative model of streaming
events and statistics to the customers preferred data visualization, it also supports native
integration with both Microsoft Azure Log Analytics and Azure Application Insights along with other
known logging solutions.

For complete visibility BIG-IP and TS also integrate with Azure Sentinel [https://devcentral.f5.com/s/articles/Integrating-the-F5-BIGIP-with-Azure-Sentinel].

F5 Telemetry Streaming [https://clouddocs.f5.com/products/extensions/f5-telemetry-streaming/latest/] also provides metrics and analytics to F5-aaS Cloud Offers along with
rich application insights and understanding when deployed alongside BIG-IQ Centralised
Management (CM) [https://www.f5.com/products/automation-and-orchestration/big-iq].

An example stanza for the configuration and declaration of TS is as follows:

{
 "class": "Telemetry",
 "TS_System": {
 "class": "Telemetry_System",
 "systemPoller": {
 "interval": 60,
 "enable": true,
 "trace": false,
 "actions": [
 {
 "setTag": {
 "tenant": "`T`",
 "application": "`A`"
 },
 "enable": true
 }
]
 },
 "enable": true,
 "trace": false,
 "host": "localhost",
 "port": 8100,
 "protocol": "http"
 },
 "TS_Listener": {
 "class": "Telemetry_Listener",
 "port": 6514,
 "enable": true,
 "trace": false,
 "match": "",
 "actions": [
 {
 "setTag": {
 "tenant": "`T`",
 "application": "`A`"
 },
 "enable": true
 }
]
 },
 "Poller":{
 "class":"Telemetry_System_Poller",
 "interval":60,
 "enable":true,
 "trace":false,
 "allowSelfSignedCert":false,
 "host":"localhost",
 "port":8100,
 "protocol":"http"
 },
 "Beacon_Consumer":{
 "class":"Telemetry_Consumer",
 "type":"Generic_HTTP",
 "host":"ingestion.ovr.prd.f5aas.com",
 "protocol":"https",
 "port":50443,
 "path":"/beacon/v1/ingest-telemetry-streaming",
 "method":"POST",
 "enable":true,
 "trace":false,
 "headers":[
 {
 "name":"grpc-metadata-x-f5-ingestion-token",
 "value":"`>@/passphrase`"
 }
],
 "passphrase":{
 "cipherText":"<it's one of those secret things>"
 }
 },
 "Statsd_Consumer": {
 "type": "Statsd",
 "host": "elk.local",
 "protocol": "udp",
 "class": "Telemetry_Consumer",
 "port": 8125,
 "enable": true,
 "trace": false
 },
 "ElasticSearch_Consumer": {
 "index": "f5telemetryindex",
 "protocol": "http",
 "dataType": "_doc",
 "class": "Telemetry_Consumer",
 "host": "elk.local",
 "type": "ElasticSearch",
 "port": 9200,
 "enable": true,
 "trace": false
 },
 "SumoLogic_Consumer": {
 "class": "Telemetry_Consumer",
 "type": "Sumo_Logic",
 "host": "collectors.sumologic.com",
 "protocol": "https",
 "port": 443,
 "enable": true,
 "trace": false,
 "path": "/receiver/v1/http/",
 "passphrase": {
 "cipherText": "<another one of those secrets>"
 }
 },
 "schemaVersion": "1.6.0"
}

The previous TS example creates a Virtual Server (VS) local listener on the BIG-IP appliance, port
6517, then a system poller with an interval of 60 seconds on port 8100 then finally configures
three consumers of TS:

	F5a-aaS Beacon

	StatsD local listener

	ElasticSearch Indexes.

BIG-IP High Speed Logging (HSL) shares a similar framework to that of Telemetry Streaming,
this enables an ease of upgrade from HSL deployment. Telemetry Streaming also support the
redaction/masking of information on instance.

Backup and Restoration

As with all Cloud Journeys the requirements for the backup and restoration of configuration is
nullified to align with Cloud Native Immutable Infrastructure Principals [https://networking.cloud-native-principles.org/cloud-native-immutable-infrastructure-principles].

_”The gold standard for cloud infrastructure is for it be able to be provisioned without any
assistance. The tools that provision that infrastructure should accept declarative configuration
as inputs.”_

F5 Automated Tool Chain combined with Azure ARM templates enables the ease of secure deployments in
an agile manner, if the both the workload and data classification require it
F5 Networks Secure Cloud Architecture (SCA) Solutions [https://www.f5.com/solutions/secure-cloud-architecture].

As with migrations, workload components need configuration up-lifted or refreshed and understanding
this F5 offers assistance through both professional services and community channels
within Slack [https://f5cloudsolutions.slack.com] or GitHub.

Recommendations

With cloud to align with the elasticity and immutability I believe that operating in the cloud
requires automation, therefore one should not shy away from automated updates to User Defined
Routing (UDR’s) given that tools such as F5’s Cloud Failover Extension (CFE) to be native with
mature cloud operations.

The use of BIG-IP v15.1.x also brings support for Accelerated Networking on Azure [https://clouddocs.f5.com/cloud/public/v1/azure/Azure_accelNet.html] that has
support for SR-IOV, also improvements to cloud-init [https://cloudinit.readthedocs.io/en/latest/] both an upgrade to version 18.5 and
additional support two custom modules, Set password and TMOS Declared. Using these modules you can
change the built-in TMOS admin and root passwords and leverage F5 Automation Toolchain (including,
Declarative Onboarding and F5 Application Services Extension) respectively.

BIG-IP v15.1.x also brings support for the previously mention F5 Application Services Templates
(FAST) that allows the creation application templates for virtual server configuration and for
these to be deployed as AS3 applications.

With outbound traffic traversing the BIG-IP as per the 3nic deployment pattern, it allows for the
inspection, analysis, securing, etc - not only because it allows apps to see the true source IP.

Finally, best practices to follow when on the early stages of a cloud journey;

	use of GitFlow or Git Branching DevOps

	use CI/CD tools, Azure DevOps, for speed of deployments

	template based deployments both non-prod and prod (IaC)

	use of DO and AS3 to keep configuration off box

	App & Dev teams configuring partitioned BIG-IP using declarative deployments.

Conclusion

As it has been touched on there is multiple ways to deploy and dictate the architectural
requirements of individual workloads, in a immutable declarative way that removes the need for
break-glass and ClickOps configuration steps.

By framing the application flows/workloads as a series of objects rather than a single blob/entity
it allows this flow, Code to Customer, to be simplified in all stages of the applications
life-cycle.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to f5-uwa-cloud’s documentation!

 		
 UWA Recommendations

 		
 UWA - Ingest VNET.

 		
 Benefits

 		
 Requirements:

 		
 Application Deployment Lifecycle.

 		
 Provisioning

 		
 ARM Templates

 		
 Declarative Onboarding (DO)

 		
 Configuration

 		
 F5 Application Services Templates (FAST)

 		
 Application Services 3 Extension (AS3)

 		
 Ansible

 		
 HashiCorp

 		
 Monitoring & Analytics

 		
 F5 Automation Tool Chain - Telemetry Streaming (TS)

 		
 Backup and Restoration

 		
 Recommendations

 		
 Conclusion

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

